Progresiones geométricas
por recurrencia:
a(sub)1
a(sub)n
r =razón
termino general:
a(sub)n=a(sub)1·r elevado a n-1
a(sub)n=a(sub) p·r elevado a n-p
a(sub)n=a(sub)p+(n-p)·d
- término general de relación con el
término que ocupa el lugar p
p(sub)n=raíz cuadrada de
( a(sub)1·a(sub)n) elevado a "n"
-sobre el producto de los "n" primeros términos
p(sub)n=ac elevado a "n
-sobre cuando el producto "n" es impar en función del central.
s(sub)n=a(sub)n·r -a(sub)1 partido entre r-1
-sobre la suma de los "n" primeros términos de una progresión
geométrica.